Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae.
نویسنده
چکیده
Mutator strains of yeast were used to accumulate random point mutations. Most of the observed changes in fitness were negative and relatively small, although major decreases and increases were also present. The average fitness of haploid strains was lowered by approximately 25% due to the accumulated genetic load. The impact of the load remained basically unchanged when a homozygous diploid was compared with the haploid from which it was derived. In other experiments a heterozygous diploid was compared with the two different loaded haploids from which it was obtained. The fitness of such a loaded diploid was much less reduced and did not correlate with the average fitness of the two haploids. There was a fitness correlation, however, when genetically related heterozygous diploids were compared, indicating that the fitness effects of the new alleles were not entirely lost in the heterozygotes. It is argued here that to explain the observed pattern of fitness transitions it is necessary to invoke nonadditive genetic interactions that go beyond the uniform masking effect of wild-type alleles. Thus, the results gathered with haploids and homozygotes should be extrapolated to heterozygotes with caution when multiple loci contribute to the genetic load.
منابع مشابه
Ploidy-Regulated Variation in Biofilm-Related Phenotypes in Natural Isolates of Saccharomyces cerevisiae
The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and "flocs" (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isol...
متن کاملPloidy evolution in the yeast Saccharomyces cerevisiae: a test of the nutrient limitation hypothesis.
The nutrient limitation hypothesis provides a nongenetic explanation for the evolution of life cycles that retain both haploid and diploid phases: differences in nutrient requirements and uptake allow haploids to override the potential genetic advantages provided by diploidy under certain nutrient limiting conditions. The relative fitness of an isogenic series of haploid, diploid and tetraploid...
متن کاملIsolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae
In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...
متن کاملCharacteristics of Saccharomyces cerevisiae isolated from fruits and humus: Their suitability for bread making
The objectives of this study were to clarify whether the wild yeast isolated from fruits and humus is suitable forbread making. Using colony PCR, assimilation of carbohydrate and 18S rRNA sequencing, seven strains fromamong 70 samples were identified as Saccharomyces cerevisiae. The ethanol and CO2 production by the 10-2 wild yeast strain were highest among the strains. The pH and utilized gluc...
متن کاملFitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae.
We generated all possible haploid and homozygous diploid genotypes at 6 biosynthetic loci in yeast and scored their fitness to examine whether there was any pattern of weak synergistic epistasis, which is a requirement of the deterministic mutation model for the evolution of sex. We measured 4 components of fitness: haploid growth rate, haploid mating efficiency, diploid growth rate, and diploi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 151 1 شماره
صفحات -
تاریخ انتشار 1999